Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 626(8001): 1133-1140, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326618

RESUMEN

Protein synthesis is a major energy-consuming process of the cell that requires the controlled production1-3 and turnover4,5 of ribosomes. Although the past few years have seen major advances in our understanding of ribosome biogenesis, structural insight into the degradation of ribosomes has been lacking. Here we present native structures of two distinct small ribosomal 30S subunit degradation intermediates associated with the 3' to 5' exonuclease ribonuclease R (RNase R). The structures reveal that RNase R binds at first to the 30S platform to facilitate the degradation of the functionally important anti-Shine-Dalgarno sequence and the decoding-site helix 44. RNase R then encounters a roadblock when it reaches the neck region of the 30S subunit, and this is overcome by a major structural rearrangement of the 30S head, involving the loss of ribosomal proteins. RNase R parallels this movement and relocates to the decoding site by using its N-terminal helix-turn-helix domain as an anchor. In vitro degradation assays suggest that head rearrangement poses a major kinetic barrier for RNase R, but also indicate that the enzyme alone is sufficient for complete degradation of 30S subunits. Collectively, our results provide a mechanistic basis for the degradation of 30S mediated by RNase R, and reveal that RNase R targets orphaned 30S subunits using a dynamic mechanism involving an anchored switching of binding sites.


Asunto(s)
Exorribonucleasas , Proteínas Ribosómicas , Ribosomas , Exorribonucleasas/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Cinética , Sitios de Unión
2.
Methods Mol Biol ; 2741: 307-345, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38217661

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen accounting for high mortality rates among infected patients. Transcriptomic regulation by small RNAs (sRNAs) has been shown to regulate networks promoting antibiotic resistance and virulence in S. aureus. Yet, the biological role of most sRNAs during MRSA host infection remains unknown. To fill this gap, in collaboration with the lab of Jai Tree, we performed comprehensive RNA-RNA interactome analyses in MRSA using CLASH under conditions that mimic the host environment. Here we present a detailed version of this optimized CLASH (cross-linking, ligation, and sequencing of hybrids) protocol we recently developed, which has been tailored to explore the RNA interactome in S. aureus as well as other Gram-positive bacteria. Alongside, we introduce a compilation of helpful Python functions for analyzing folding energies of putative RNA-RNA interactions and streamlining sRNA and mRNA seed discovery in CLASH data. In the accompanying computational demonstration, we aim to establish a standardized strategy to evaluate the likelihood that observed chimeras arise from true RNA-RNA interactions.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , ARN Pequeño no Traducido , Humanos , ARN Bacteriano/genética , Staphylococcus aureus/genética , Staphylococcus aureus Resistente a Meticilina/genética , Biología Computacional/métodos , ARN Mensajero/genética , Regulación Bacteriana de la Expresión Génica , ARN Pequeño no Traducido/genética
3.
Mol Microbiol ; 120(4): 477-489, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165708

RESUMEN

RNA-binding proteins (RBPs) govern the lifespan of nearly all transcripts and play key roles in adaptive responses in microbes. A robust approach to examine protein-RNA interactions involves irradiating cells with UV light to form covalent adducts between RBPs and their cognate RNAs. Combined with RNA or protein purification, these procedures can provide global RBP censuses or transcriptomic maps for all target sequences of a single protein in living cells. The recent development of novel methods has quickly populated the RBP landscape in microorganisms. Here, we provide an overview of prominent UV cross-linking techniques which have been applied to investigate RNA interactomes in microbes. By assessing their advantages and caveats, this technical evaluation intends to guide the selection of appropriate methods and experimental design as well as to encourage the use of complementary UV-dependent techniques to inspect RNA-binding activity.


Asunto(s)
ARN , Rayos Ultravioleta , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Perfilación de la Expresión Génica/métodos , Transcriptoma
4.
Nat Commun ; 14(1): 696, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755023

RESUMEN

Dynamic RNA-protein interactions govern the co-transcriptional packaging of RNA polymerase II (RNAPII)-derived transcripts. Yet, our current understanding of this process in vivo primarily stems from steady state analysis. To remedy this, we here conduct temporal-iCLIP (tiCLIP), combining RNAPII transcriptional synchronisation with UV cross-linking of RNA-protein complexes at serial timepoints. We apply tiCLIP to the RNA export adaptor, ALYREF; a component of the Nuclear Exosome Targeting (NEXT) complex, RBM7; and the nuclear cap binding complex (CBC). Regardless of function, all tested factors interact with nascent RNA as it exits RNAPII. Moreover, we demonstrate that the two transesterification steps of pre-mRNA splicing temporally separate ALYREF and RBM7 binding to splicing intermediates, and that exon-exon junction density drives RNA 5'end binding of ALYREF. Finally, we identify underappreciated steps in snoRNA 3'end processing performed by RBM7. Altogether, our data provide a temporal view of RNA-protein interactions during the early phases of transcription.


Asunto(s)
Núcleo Celular , Proteínas de Unión al ARN , Proteínas de Unión al ARN/metabolismo , Núcleo Celular/metabolismo , Precursores del ARN/metabolismo , Empalme del ARN , ARN Polimerasa II/metabolismo , ARN Nucleolar Pequeño/metabolismo
6.
Nat Commun ; 13(1): 3560, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732654

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen responsible for significant human morbidity and mortality. Post-transcriptional regulation by small RNAs (sRNAs) has emerged as an important mechanism for controlling virulence. However, the functionality of the majority of sRNAs during infection is unknown. To address this, we performed UV cross-linking, ligation, and sequencing of hybrids (CLASH) in MRSA to identify sRNA-RNA interactions under conditions that mimic the host environment. Using a double-stranded endoribonuclease III as bait, we uncovered hundreds of novel sRNA-RNA pairs. Strikingly, our results suggest that the production of small membrane-permeabilizing toxins is under extensive sRNA-mediated regulation and that their expression is intimately connected to metabolism. Additionally, we also uncover an sRNA sponging interaction between RsaE and RsaI. Taken together, we present a comprehensive analysis of sRNA-target interactions in MRSA and provide details on how these contribute to the control of virulence in response to changes in metabolism.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , ARN Pequeño no Traducido , Ribonucleasa III , Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
7.
Nat Commun ; 13(1): 3558, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732665

RESUMEN

Treatment of methicillin-resistant Staphylococcus aureus infections is dependent on the efficacy of last-line antibiotics including vancomycin. Treatment failure is commonly linked to isolates with intermediate vancomycin resistance (termed VISA). These isolates have accumulated point mutations that collectively reduce vancomycin sensitivity, often by thickening the cell wall. Changes in regulatory small RNA expression have been correlated with antibiotic stress in VISA isolates however the functions of most RNA regulators is unknown. Here we capture RNA-RNA interactions associated with RNase III using CLASH. RNase III-CLASH uncovers hundreds of novel RNA-RNA interactions in vivo allowing functional characterisation of many sRNAs for the first time. Surprisingly, many mRNA-mRNA interactions are recovered and we find that an mRNA encoding a long 3' untranslated region (UTR) (termed vigR 3'UTR) functions as a regulatory 'hub' within the RNA-RNA interaction network. We demonstrate that the vigR 3'UTR promotes expression of folD and the cell wall lytic transglycosylase isaA through direct mRNA-mRNA base-pairing. Deletion of the vigR 3'UTR re-sensitised VISA to glycopeptide treatment and both isaA and vigR 3'UTR deletions impact cell wall thickness. Our results demonstrate the utility of RNase III-CLASH and indicate that S. aureus uses mRNA-mRNA interactions to co-ordinate gene expression more widely than previously appreciated.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Ribonucleasa III , Resistencia a la Vancomicina , Regiones no Traducidas 3'/genética , Antibacterianos/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/metabolismo , Pruebas de Sensibilidad Microbiana , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Vancomicina/farmacología , Resistencia a la Vancomicina/genética
8.
Nat Commun ; 13(1): 2883, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610211

RESUMEN

RNA-binding proteins play key roles in controlling gene expression in many organisms, but relatively few have been identified and characterised in detail in Gram-positive bacteria. Here, we globally analyse RNA-binding proteins in methicillin-resistant Staphylococcus aureus (MRSA) using two complementary biochemical approaches. We identify hundreds of putative RNA-binding proteins, many containing unconventional RNA-binding domains such as Rossmann-fold domains. Remarkably, more than half of the proteins containing helix-turn-helix (HTH) domains, which are frequently found in prokaryotic transcription factors, bind RNA in vivo. In particular, the CcpA transcription factor, a master regulator of carbon metabolism, uses its HTH domain to bind hundreds of RNAs near intrinsic transcription terminators in vivo. We propose that CcpA, besides acting as a transcription factor, post-transcriptionally regulates the stability of many RNAs.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Secuencias Hélice-Giro-Hélice/genética , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/metabolismo , Unión Proteica , Proteoma/metabolismo , ARN/metabolismo , Factores de Transcripción/metabolismo
9.
FEBS J ; 289(7): 1746-1764, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33690958

RESUMEN

Bacteria are constantly subjected to stressful conditions, such as antibiotic exposure, nutrient limitation and oxidative stress. For pathogenic bacteria, adapting to the host environment, escaping defence mechanisms and coping with antibiotic stress are crucial for their survival and the establishment of a successful infection. Stress adaptation relies heavily on the rate at which the organism can remodel its gene expression programme to counteract the stress. RNA-binding proteins mediating co- and post-transcriptional regulation have recently emerged as important players in regulating gene expression during adaptive responses. Most of the research on these layers of gene expression regulation has been done in Gram-negative model organisms where, thanks to a wide variety of global studies, large post-transcriptional regulatory networks have been uncovered. Unfortunately, our understanding of post-transcriptional regulation in Gram-positive bacteria is lagging behind. One possible explanation for this is that many proteins employed by Gram-negative bacteria are not well conserved in Gram-positives. And even if they are conserved, they do not always play similar roles as in Gram-negative bacteria. This raises the important question whether Gram-positive bacteria regulate gene expression in a significantly different way. The goal of this review was to discuss this in more detail by reviewing the role of well-known RNA-binding proteins in Gram-positive bacteria and by highlighting their different behaviours with respect to some of their Gram-negative counterparts. Finally, the second part of this review introduces several unusual RNA-binding proteins of Gram-positive species that we believe could also play an important role in adaptive responses.


Asunto(s)
Bacterias Gramnegativas , Bacterias Grampositivas , Antibacterianos/metabolismo , Regulación Bacteriana de la Expresión Génica , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/genética , Bacterias Grampositivas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
10.
Nat Commun ; 12(1): 4696, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349113

RESUMEN

Productive ribosomal RNA (rRNA) compaction during ribosome assembly necessitates establishing correct tertiary contacts between distant secondary structure elements. Here, we quantify the response of the yeast proteome to low temperature (LT), a condition where aberrant mis-paired RNA folding intermediates accumulate. We show that, at LT, yeast cells globally boost production of their ribosome assembly machinery. We find that the LT-induced assembly factor, Puf6, binds to the nascent catalytic RNA-rich subunit interface within the 60S pre-ribosome, at a site that eventually loads the nuclear export apparatus. Ensemble Förster resonance energy transfer studies show that Puf6 mimics the role of Mg2+ to usher a unique long-range tertiary contact to compact rRNA. At LT, puf6 mutants accumulate 60S pre-ribosomes in the nucleus, thus unveiling Puf6-mediated rRNA compaction as a critical temperature-regulated rescue mechanism that counters rRNA misfolding to prime export competence.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Unión al ARN/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Frío , GTP Fosfohidrolasas/metabolismo , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteoma/metabolismo , Pliegue del ARN , Precursores del ARN/química , Precursores del ARN/metabolismo , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Subunidades Ribosómicas Grandes de Eucariotas/química , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
11.
Genome Biol ; 22(1): 165, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34044851

RESUMEN

Advancing RNA structural probing techniques with next-generation sequencing has generated demands for complementary computational tools to robustly extract RNA structural information amidst sampling noise and variability. We present diffBUM-HMM, a noise-aware model that enables accurate detection of RNA flexibility and conformational changes from high-throughput RNA structure-probing data. diffBUM-HMM is widely compatible, accounting for sampling variation and sequence coverage biases, and displays higher sensitivity than existing methods while robust against false positives. Our analyses of datasets generated with a variety of RNA probing chemistries demonstrate the value of diffBUM-HMM for quantitatively detecting RNA structural changes and RNA-binding protein binding sites.


Asunto(s)
Algoritmos , Secuenciación de Nucleótidos de Alto Rendimiento , Cadenas de Markov , Modelos Estadísticos , ARN/química , ARN/genética , Secuencia de Bases , Sitios de Unión , Bases de Datos Genéticas , Modelos Teóricos , Mutación/genética , Nucleótidos/genética , Unión Proteica , Precursores del ARN/genética , ARN Largo no Codificante/genética , Ribosomas/metabolismo
12.
PLoS Pathog ; 17(5): e1009606, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34015034

RESUMEN

The emergence of new pathogens is a major threat to public and veterinary health. Changes in bacterial habitat such as a switch in host or disease tropism are typically accompanied by genetic diversification. Staphylococcus aureus is a multi-host bacterial species associated with human and livestock infections. A microaerophilic subspecies, Staphylococcus aureus subsp. anaerobius, is responsible for Morel's disease, a lymphadenitis restricted to sheep and goats. However, the evolutionary history of S. aureus subsp. anaerobius and its relatedness to S. aureus are unknown. Population genomic analyses of clinical S. aureus subsp. anaerobius isolates revealed a highly conserved clone that descended from a S. aureus progenitor about 1000 years ago before differentiating into distinct lineages that contain African and European isolates. S. aureus subsp. anaerobius has undergone limited clonal expansion, with a restricted population size, and an evolutionary rate 10-fold slower than S. aureus. The transition to its current restricted ecological niche involved acquisition of a pathogenicity island encoding a ruminant host-specific effector of abscess formation, large chromosomal re-arrangements, and the accumulation of at least 205 pseudogenes, resulting in a highly fastidious metabolism. Importantly, expansion of ~87 insertion sequences (IS) located largely in intergenic regions provided distinct mechanisms for the control of expression of flanking genes, including a novel mechanism associated with IS-mediated anti-anti-sense decoupling of ancestral gene repression. Our findings reveal the remarkable evolutionary trajectory of a host-restricted bacterial pathogen that resulted from extensive remodelling of the S. aureus genome through an array of diverse mechanisms in parallel.


Asunto(s)
Genoma Bacteriano/genética , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus/genética , Animales , Evolución Biológica , Ecosistema , Genómica , Humanos , Ganado , Filogenia , Transcriptoma , Secuenciación Completa del Genoma
13.
RNA Biol ; 18(6): 914-931, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33043783

RESUMEN

Previous high-throughput studies in Gram-negative bacteria identified a large number of 3'UTR fragments that potentially function as sRNAs. Here we extensively characterize the MalH sRNA. We show that MalH is a stable degradation intermediate derived from the 3' end of malG, which is part of the maltose uptake operon transcript malEFG. Unlike the majority of bacterial sRNAs, MalH is transiently expressed during the transition from the exponential to the stationary growth phase, suggesting that it contributes to adaptation to changes in nutrient availability. Over-expression of MalH reduces expression of general outer membrane porins and MicA, a repressor of the high-affinity maltose/maltodextrin transporter LamB. Disrupting MalH production and function significantly reduces lamB accumulation when maltose is the only available carbon source, presumably due to the accumulation of the MicA repressor. We propose that MalH is part of a regulatory network that, during the transition phase, directly or indirectly promotes accumulation of high-affinity maltose transporters in the outer membrane by dampening competing pathways.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Carbono/metabolismo , Proteínas de Escherichia coli/genética , Porinas/genética , ARN Bacteriano/genética , ARN Mensajero/genética , ARN Pequeño no Traducido/genética , Receptores Virales/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Bacteriana de la Expresión Génica , Maltosa/metabolismo , Operón/genética , Porinas/metabolismo , Unión Proteica , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/metabolismo , RNA-Seq/métodos , Receptores Virales/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
14.
Elife ; 92020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32356726

RESUMEN

By shaping gene expression profiles, small RNAs (sRNAs) enable bacteria to efficiently adapt to changes in their environment. To better understand how Escherichia coli acclimatizes to nutrient availability, we performed UV cross-linking, ligation and sequencing of hybrids (CLASH) to uncover Hfq-associated RNA-RNA interactions at specific growth stages. We demonstrate that Hfq CLASH robustly captures bona fide RNA-RNA interactions. We identified hundreds of novel sRNA base-pairing interactions, including many sRNA-sRNA interactions and involving 3'UTR-derived sRNAs. We rediscovered known and identified novel sRNA seed sequences. The sRNA-mRNA interactions identified by CLASH have strong base-pairing potential and are highly enriched for complementary sequence motifs, even those supported by only a few reads. Yet, steady state levels of most mRNA targets were not significantly affected upon over-expression of the sRNA regulator. Our results reinforce the idea that the reproducibility of the interaction, not base-pairing potential, is a stronger predictor for a regulatory outcome.


Asunto(s)
Metabolismo Energético , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/genética , Procesamiento Postranscripcional del ARN , ARN Bacteriano/genética , ARN Mensajero/genética , ARN Pequeño no Traducido/genética , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Adaptación Fisiológica , Bases de Datos Genéticas , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteína de Factor 1 del Huésped/metabolismo , Modelos Genéticos , Conformación de Ácido Nucleico , Estabilidad del ARN , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/metabolismo
15.
J Vis Exp ; (159)2020 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-32449723

RESUMEN

The interaction between RNA-binding proteins (RBPs) and their RNA substrates exhibits fluidity and complexity. Within its lifespan, a single RNA can be bound by many different RBPs that will regulate its production, stability, activity, and degradation. As such, much has been done to understand the dynamics that exist between these two types of molecules. A particularly important breakthrough came with the emergence of 'cross-linking and immunoprecipitation' (CLIP). This technique allowed stringent investigation into which RNAs are bound by a particular RBP. In short, the protein of interest is UV cross-linked to its RNA substrates in vivo, purified under highly stringent conditions, and then the RNAs covalently cross-linked to the protein are converted into cDNA libraries and sequenced. Since its conception, many derivative techniques have been developed in order to make CLIP amenable to particular fields of study. However, cross-linking using ultraviolet light is notoriously inefficient. This results in extended exposure times that make the temporal study of RBP-RNA interactions impossible. To overcome this issue, we recently designed and built much-improved UV irradiation and cell harvesting devices. Using these new tools, we developed a protocol for time-resolved analyses of RBP-RNA interactions in living cells at high temporal resolution: Kinetic CRoss-linking and Analysis of cDNAs (χCRAC). We recently used this technique to study the role of yeast RBPs in nutrient stress adaptation. This manuscript provides a detailed overview of the χCRAC method and presents recent results obtained with the Nrd1 RBP.


Asunto(s)
Biblioteca de Genes , Unión Proteica/genética , Proteínas/metabolismo , ARN/metabolismo
16.
Methods Mol Biol ; 2049: 213-231, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31602614

RESUMEN

RNA-binding proteins are important for core cellular processes such as mRNA transcription, splicing, transport, translation, and degradation. Recently, hundreds of novel RNA-binders have been identified in vivo in various organisms and cell types. We discuss the RNA interactome capture technique which enabled this boost in identifying new RNA-binding proteins in eukaryotes. A focus of this chapter, however, is the presentation of different challenges and problems that need to be addressed to be able to understand the conserved mRNA-bound proteomes from yeast to man.


Asunto(s)
Proteoma/metabolismo , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Ratones , Modelos Biológicos , Proteoma/análisis , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética
17.
Nat Commun ; 10(1): 990, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30824702

RESUMEN

Recent methodological advances allowed the identification of an increasing number of RNA-binding proteins (RBPs) and their RNA-binding sites. Most of those methods rely, however, on capturing proteins associated to polyadenylated RNAs which neglects RBPs bound to non-adenylate RNA classes (tRNA, rRNA, pre-mRNA) as well as the vast majority of species that lack poly-A tails in their mRNAs (including all archea and bacteria). We have developed the Phenol Toluol extraction (PTex) protocol that does not rely on a specific RNA sequence or motif for isolation of cross-linked ribonucleoproteins (RNPs), but rather purifies them based entirely on their physicochemical properties. PTex captures RBPs that bind to RNA as short as 30 nt, RNPs directly from animal tissue and can be used to simplify complex workflows such as PAR-CLIP. Finally, we provide a global RNA-bound proteome of human HEK293 cells and the bacterium Salmonella Typhimurium.


Asunto(s)
Biología Molecular/métodos , Fenol/química , Proteínas de Unión al ARN/aislamiento & purificación , Tolueno/química , Animales , Secuencia de Bases , Encéfalo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Complejos Multiproteicos/aislamiento & purificación , Proteoma/química , Proteómica/métodos , ARN/química , ARN Mensajero , Proteínas de Unión al ARN/química , Ribonucleoproteínas/química , Ribonucleoproteínas/aislamiento & purificación , Salmonella typhimurium , Sensibilidad y Especificidad
18.
Methods Mol Biol ; 1737: 251-272, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29484598

RESUMEN

Small regulatory nonprotein-coding RNAs (sRNAs) have emerged as ubiquitous and abundant regulators of gene expression in a diverse cross section of bacteria. They play key roles in most aspects of bacterial physiology, including central metabolism, nutrient acquisition, virulence, biofilm formation, and outer membrane composition. RNA sequencing technologies have accelerated the identification of bacterial regulatory RNAs and are now being employed to understand their functions. Many regulatory RNAs require protein partners for activity, or modulate the activity of interacting proteins. Understanding how and where proteins interact with the transcriptome is essential to elucidate the functions of the many sRNAs. Here, we describe the implementation in bacteria of a UV-crosslinking technique termed CRAC that allows stringent, transcriptome-wide recovery of bacterial RNA-protein interaction sites in vivo and at base-pair resolution. We have used CRAC to map protein-RNA interaction sites for the RNA chaperone Hfq and ribonuclease RNase E in pathogenic E. coli, and toxins from toxin-antitoxin systems in Mycobacterium smegmatis, demonstrating the broad applicability of this technique.


Asunto(s)
Reactivos de Enlaces Cruzados/metabolismo , ADN Complementario/análisis , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Proteína de Factor 1 del Huésped/metabolismo , Mycobacterium smegmatis/metabolismo , ARN Pequeño no Traducido/metabolismo , Sitios de Unión , ADN Complementario/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Biblioteca de Genes , Proteína de Factor 1 del Huésped/genética , Mycobacterium smegmatis/genética , Unión Proteica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Sistemas Toxina-Antitoxina , Transcriptoma , Rayos Ultravioleta
19.
Nucleic Acids Res ; 46(7): 3366-3381, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29432565

RESUMEN

The prokaryotic RNA chaperone Hfq mediates sRNA-mRNA interactions and plays a significant role in post-transcriptional regulation of the type III secretion (T3S) system produced by a range of Escherichia coli pathotypes. UV-crosslinking was used to map Hfq-binding under conditions that promote T3S and multiple interactions were identified within polycistronic transcripts produced from the locus of enterocyte effacement (LEE) that encodes the T3S system. The majority of Hfq binding was within the LEE5 and LEE4 operons, the latter encoding the translocon apparatus (SepL-EspADB) that is positively regulated by the RNA binding protein, CsrA. Using the identified Hfq-binding sites and a series of sRNA deletions, the sRNA Spot42 was shown to directly repress translation of LEE4 at the sepL 5' UTR. In silico and in vivo analyses of the sepL mRNA secondary structure combined with expression studies of truncates indicated that the unbound sepL mRNA is translationally inactive. Based on expression studies with site-directed mutants, an OFF-ON-OFF toggle model is proposed that results in transient translation of SepL and EspA filament assembly. Under this model, the nascent mRNA is translationally off, before being activated by CsrA, and then repressed by Hfq and Spot42.


Asunto(s)
Traslocación Bacteriana/genética , Proteínas de Escherichia coli/genética , Proteína de Factor 1 del Huésped/genética , Fosfoproteínas/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Sitios de Unión/genética , Citoesqueleto/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Conformación de Ácido Nucleico/efectos de la radiación , ARN/genética , ARN Mensajero/genética , ARN Mensajero/efectos de la radiación , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/efectos de la radiación , Rayos Ultravioleta
20.
Nucleic Acids Res ; 46(7): 3692-3706, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29373706

RESUMEN

In eukaryotes, ribosome biogenesis requires folding and assembly of the precursor rRNA (pre-rRNA) with a large number of proteins and snoRNPs into huge RNA-protein complexes. In spite of intense genetic, biochemical and high-resolution cryo-EM studies in Saccharomyces cerevisiae, information about the structure of the 35S pre-rRNA is limited. To overcome this, we performed high-throughput SHAPE chemical probing on the 35S pre-rRNA within 90S pre-ribosomes. We focused our analyses on external (5'ETS) and internal (ITS1) transcribed spacers as well as the 18S rRNA region. We show that in the 35S pre-rRNA, the central pseudoknot is not formed and the central core of the 18S rRNA is in an open configuration but becomes more constrained in 20S pre-rRNA. The essential ribosome biogenesis protein Mrd1 influences the structure of the 18S rRNA region locally and is involved in organizing the central pseudoknot and surrounding structures. We demonstrate that U3 snoRNA dynamically interacts with the 35S pre-rRNA and that Mrd1 is required for disrupting U3 snoRNA base pairing interactions in the 5'ETS. We propose that the dynamic U3 snoRNA interactions and Mrd1 are essential for establishing the structure of the central core of 18S rRNA that is required for processing and 40S subunit function.


Asunto(s)
Conformación de Ácido Nucleico , ARN Nucleolar Pequeño/genética , Proteínas de Unión al ARN/genética , Ribosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Sitios de Unión , Nucléolo Celular/química , Nucléolo Celular/genética , Precursores del ARN/genética , ARN Ribosómico 18S/genética , ARN Nucleolar Pequeño/química , Ribosomas/química , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...